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ABSTRACT
Active learning has been proven to be effective in reducing
labeling efforts for supervised learning. However, existing
active learning work has mainly focused on training mod-
els for a single domain. In practical applications, it is com-
mon to simultaneously train classifiers for multiple domains.
For example, some merchant web sites (like Amazon.com)
may need a set of classifiers to predict the sentiment polar-
ity of product reviews collected from various domains (e.g.,
electronics, books, shoes). Though different domains have
their own unique features, they may share some common
latent features. If we apply active learning on each domain
separately, some data instances selected from different do-
mains may contain duplicate knowledge due to the common
features. Therefore, how to choose the data from multiple
domains to label is crucial to further reducing the human
labeling efforts in multi-domain learning. In this paper, we
propose a novel multi-domain active learning framework to
jointly select data instances from all domains with duplicate
information considered. In our solution, a shared subspace
is first learned to represent common latent features of differ-
ent domains. By considering the common and the domain-
specific features together, the model loss reduction induced
by each data instance can be decomposed into a common
part and a domain-specific part. In this way, the duplicate
information across domains can be encoded into the common
part of model loss reduction and taken into account when
querying. We compare our method with the state-of-the-
art active learning approaches on several text classification
tasks: sentiment classification, newsgroup classification and
email spam filtering. The experiment results show that our
method reduces the human labeling efforts by 33.2%, 42.9%
and 68.7% on the three tasks, respectively.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—knowledge acqui-
sition, concept learning ; I.5.2 [Pattern Recognition]: De-
sign Methodology—Classifier design and evaluation
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1. INTRODUCTION
Text classification has drawn much research attention in

the literature. Typically, supervised classification algorithms
require sufficient labeled data to train accurate classifiers,
while the data labeling cost may be expensive. Active learn-
ing has been proven to be effective in reducing the human
labeling efforts by actively choosing the most informative
data to label. Existing active learning work has mainly fo-
cused on training models for a single domain. But in many
applications, data of interest are from multiple domains and
a group of classifiers need to be trained simultaneously for all
the domains. For example, Amazon.com has organized user
reviews of many products. A sentiment classifier [3] of each
product class (domain) is highly desirable to automatically
organize reviews according to user demands. Since differ-
ent words can be used to express sentiment in different do-
mains [17], training a single classifier for all domains would
not generalize well across various domains. For instance,
words like “blur”, “fast”, “sharp” are used to comment elec-
tronics products, while they do not carry opinion in books
domain. Therefore, each domain should have its own senti-
ment classifier. Email spam filtering is another example [8].
Since users may have different backgrounds and interests, it
is reasonable to customize spam filters for individual users.

Active learning for multi-domain text classification is a
novel research problem. The algorithm of selecting data in-
stances to label is not trivial. If we simply apply active
learning on each domain separately, some data instances
selected from different domains may contain duplicate in-
formation due to the inherent relationship among domains.
For example, in sentiment classification, reviews containing
common sentiment words like “wonderful”, “perfect”may be
selected to label by active learners of each domain, which
may cause redundant labeling efforts. On the other hand, if
we apply active learning for all domains together, the query
strategy may be affected by the distribution gap between
different domains. Therefore, how to measure the informa-
tiveness of data instances across domains is crucial. In this
paper, we propose a novel global optimization based active
learning framework for multi-domain text classification. The
proposed query strategy aims to select unlabeled instances



which can maximally reduce the model loss of all classi-
fiers once labeled. In our solution, a shared subspace is first
learned to represent common latent features of different do-
mains. By splitting the feature space into a common part
and a domain-specific part, the model loss reduction induced
by each data candidate can be decomposed into the domain-
specific loss reduction of the classifier on its corresponding
domain, and the common loss reduction of the classifiers
on all domains. By jointly querying instances, the common
model loss of all classifiers can be reduced simultaneously,
and the redundant labeling efforts can be saved.

It is worth noting that the problem setting of multi-domain
classification is different from that of cross-domain classifi-
cation. In cross-domain classification, data of interest are
assumed to come from a source domain and a target do-
main. Sufficient labeled data are available in the source
domain while no or few labeled data are available in the
target domain. The goal is to train a classifier of the tar-
get domain by leveraging the labeled data of the source do-
main. In multi-domain classification, no domain is assumed
to have sufficient labeled data. The goal is to simultaneously
train classifiers for multiple domains by leveraging common
knowledge among them. Active learning for multi-domain
classification aims to jointly select data to label for training
accurate classifiers on all domains.

The main contributions of our work include: 1) We stud-
ied an important practical problem for active learning in
multiple domains. To the best of our knowledge, this is the
first work which aims to actively build text classifiers for
multiple domains simultaneously. 2) We proposed an effi-
cient multi-domain active learning framework and showed its
effectiveness on three real-world applications, i.e. sentiment
classification, newsgroup classification and email spam filter-
ing. The experiment results on the three tasks demonstrate
that our proposed method can save more than 33% labeling
efforts compared with the state-of-the-art active learning ap-
proaches, and save more than 50% labeling efforts compared
with the random query methods.

The rest of this paper is organized as follows: we begin
by reviewing the related works in the next section. After
that, we describe the problem statement in Section 3, and
present our solution in Section 4. The experiment results
are discussed in Section 5. Finally, we conclude the paper
and discuss some future work in Section 6.

2. RELATED WORK
The performance of supervised classification highly relies

on labeled data. However, to collect sufficient training data
is difficult and time-consuming. Active learning is an alter-
native learning framework which allows classification algo-
rithms to choose the data they learn from. Existing active
learning algorithms can be generally put into three cate-
gories: 1) uncertainty sampling [13, 25], which selects the
data instances that are the most uncertainly predicted by
the current classifier; 2) query by committee [22] selects the
data instances about which the “committee” disagree most;
and 3) expected error reduction [20], which aims to select the
instance that can contribute the largest model loss reduction
for the current classifier once labeled. Recently, Donmez and
Carbonell proposed the proactive learning framework which
relaxes some unrealistic assumptions of active learning in
practical applications [7]. Beygelzimer et al. proposed an
importance weighting method to avoid label-sampling bias

in active learning [2]. In [15] and [5], the authors proposed
the active learning methods for data with multiple views. In
multi-view learning, every data instance is assumed to have
several different descriptions, each of which can be used to
learn concepts of interest.

Transfer learning is another technology to save the label-
ing efforts for supervised learning. Dredze et al. developed
a multi-domain learning method based on parameter combi-
nation [8]. Xie et al. proposed the LatentMap algorithm to
leverage the shared features for transfer learning [26]. Given
an oracle and a lot of labeled data from a source domain,
some researchers proposed to combine active learning and
transfer learning to train an accurate classifier for a target
domain [18, 23]. Shi et al. proposed to use the source do-
main classifier to answer the target domain queries as often
as possible, and query the oracle only when necessary [23].
In [18], Rai et al. considered to use the source domain clas-
sifier as an initial classifier for the target domain. And the
source domain data are further used to rule out the target
domain queries which appear similar to the source domain
data. Different from their works, we aim to build classifiers
for multiple domains together, while they targeted at train-
ing the classifier of target domain by using the knowledge
from the source domain.

Our work is also related to multi-task active learning,
which has been studied to solve the problem where data
instances are labeled in multiple ways for different tasks.
Reichart et al. proposed a novel active learning method to
label data instances with several linguistic annotations, such
as named entities, syntactic parse trees, etc. [19]. Zhang
tried to solve the multi-task active learning problem where
outputs of different tasks are coupled by constraints [27].
Harpale et al. proposed an active learning method for multi-
task adaptive filtering [11]. An adaptive filtering system
monitors a set of documents to find and deliver the rele-
vant items to a particular task. Its performance is boosted
with the relevance feedback received on the delivered items.
In [11], the items which lead to the maximal relevance feed-
back will be selected to deliver. Different from their works,
we focus on a single task with multiple domains. In our
problem, different domains share the same target concepts
but have different data distributions. In addition, our work
aims at proposing an active learning method for classifica-
tion problems instead of adaptive filtering or natural lan-
guage annotation. This makes the optimization goal of our
proposed query strategy different from theirs.

3. PROBLEM DEFINITION
In this section, we introduce some definitions and the

problem statement.

Definition 1. (Domain) A domain consists of a set of
data instances which are generated from the same data dis-
tribution P (x), where x ∈ X and X is a feature space.

For example, a set of user reviews for electronics prod-
ucts can be regarded as one domain, while reviews for dif-
ferent types of products, such as books, movies, can be re-
garded as books and movies domains, respectively. Data
instances from one domain are assumed to be independent
and identically distributed (i.i.d.). But data distributions
across domains may be different. In this paper, the domain
each data instance belongs to is assumed to be known. The
multi-domain classification problem is defined as follows:



Definition 2. (Multi-Domain Classification) Given a set
of data instances collected from K different domains, where
each domain has its own data distribution. Let X be a fea-
ture space1 and Y be a pre-defined label set. The task is to
train K classifiers f � : X → Y, � = 1, 2, . . . ,K, for all the
domains.

Based on the definitions above, we now define the problem
we aim to address in this paper as follows:

Definition 3. (Active Learning for Multi-Domain Clas-
sification) Let P = {P1,P2, . . . ,PK} be an unlabeled data
pool which consists of data instances collected from K dif-
ferent domains. Here P� = {x�

1,x
�
2, . . . ,x

�
N�} includes N�

data instances come from the �’th domain. The task is to
build K accurate classifiers f � : X → Y, � = 1, 2, . . . ,K, by
selecting data instances to label as few as possible.

Our active learning framework is based on pool-based
sampling [13, 21]. In pool-based sampling, active learning
is iteratively performed on an unlabeled data pool, which
is usually assumed to be closed (i.e. stationary) [21]. Typi-
cally, in each iteration, the active learner scans the unlabeled
data pool and chooses the most informative data candidates
to label.

4. OUR SOLUTION
In this section, we describe our solution for multi-domain

active learning. The main notations are listed in Table 1.

Table 1: Notations
Symbols Description

K total number of domains
x�
i the i’th labeled data in the �’th domain

y�i ground truth of x�
i

θ learned shared subspace transformation matrix
w� weight vector specific to the �’th domain
v weight vector associated with the shared subspace
f�
D predictive function of the �’th domain

L(·) model loss of a classifier
λ� domain weight specified by users
LD global model loss of all classifiers
V� version space of the �’th domain
W� parameter space of the �’th domain
V �
D the size of V�

4.1 A General Optimization Framework
Recall that, in active learning for a single domain, an ac-

tive learner attempts to select the most informative data
instances to label in order to train an accurate classifier us-
ing as few labeling efforts as possible. In active learning for
multiple domains, the goal is to choose the data instances
which are not only informative for their corresponding do-
mains but also for other domains such that all classifiers can
benefit from the labeling.

Suppose that L(f �
D) is the model loss of classifier f �

D, the
global model loss of all classifiers is defined as:

LD =

K∑
�=1

λ�L(f �
D), (1)

1In this work, we assume all domains share the same vocab-
ulary (i.e. feature space).

where {λ�}K�=1 are user specified weights for different do-
mains. The goal of our query strategy is to select an un-
labeled instance x∗ which can maximally reduce the global
model loss once labeled. The optimization objective can be
formulated as:

x∗ = argmax
x∗

LD − LD+(x∗,y∗)

= argmax
x∗

K∑
�=1

λ� ·
(
L(f �

D)− L(f �
D+(x∗,y∗))

)
, (2)

where D+(x∗, y∗) is the expanded training set after data
instance x∗ and its ground truth y∗ are added. In some
real-world applications, different domains may have different
priorities. For example, users may require high classification
performance or fast model convergency for some particular
domains. In this case, one can assign larger weights for such
domains. However, in many other scenarios, users may not
have these requirements. Under such case, one can simply
set the same weight for each domain. Without loss of gen-
erality, we set λ� = 1 for all domains in this paper.

In practice, we do not know ground truth y∗ of data in-
stance x∗ before querying. Therefore, we are not able to
estimate the model loss in (2) directly. Instead, we use the
expectation loss over all possible labels to approximate the
true model loss. As a result, we can replace (2) by the fol-
lowing objective:

x∗=argmax
x∗

∑
y∈Y

P̂ (y|x∗)
K∑
�=1

(
L(f �

D)− L(f �
D+(x∗,y))

)
, (3)

where P̂ (y|x∗) is the conditional probability of label y given
data instance x∗ estimated by the current classifier.

4.2 Multi-Domain Classification with SVM
Before describing our solution for multi-domain active learn-

ing, we first present an SVM-based multi-domain classifica-
tion method which is used as the classification model in our
optimization framework.

Support Vector Machines (SVMs) have been widely used
for text classification [12, 25]. In this paper, we incorporate
a shared subspace to represent common latent features into
SVM for multi-domain classification. The predictive func-
tion f �

D of the �’th (� ∈ {1, ..., K}) domain is defined as:

f �
D(x�) = w� · Φ(x�) + v · Φ(θx�), (4)

which consists of two parts: one is performed on the orig-
inal feature space, and the other is derived for the shared
subspace. Here D is a training set, Φ is a feature map, w�

and v are two weight vectors, θ is a learned transformation
matrix to map the original feature space to the shared low-
dimensional subspace. The shared parameters v and θ are
leveraged to capture the common latent features across do-
mains. Note that the idea of the formulation above is similar
to that in multi-task learning [1, 9]. However, in this paper,
we focus on proposing a novel active learning framework for
multi-domain classification instead of a novel multi-domain
classification method. In [1], Ando and Zhang proposed to
learn the parameters {w�}’s, v and θ jointly by updating
them iteratively. In each iteration, the singular value de-
composition is required to update θ, which is not efficient,
especially for active learning.

We propose to learn the parameters in two steps. In the
first step, we apply Spectral Feature Alignment (SFA) [17],



which is an unsupervised shared subspace learning method,
to estimate θ. Note that besides SFA, many other effec-
tive approaches to shared subspace learning can be inte-
grated into our framework, such as Structural Correspon-
dence learning (SCL) [4], Maximum Mean Discrepancy Em-
bedding (MMDE) [16], etc. In SFA, a set of domain indepen-
dent features are firstly identified, and a bipartite graph is
constructed to model the co-occurrence between the domain-
independent features and the domain-specific features. Then
a spectral clustering algorithm is adapted on the bipartite
graph to co-align the two kinds of features into unified clus-
ters. The space spanned by the unified clusters is then con-
sidered as the shared subspace across domains. In the sec-
ond step, we estimate {w�}’s and v by solving the SVM
optimization problem as follows2 :

min
{w�}’s,v

1

2
‖v‖2 + 1

2

K∑
�=1

‖w�‖2, (5)

s.t. y�
i (w

� · Φ(x�
i) + v · Φ(θx�

i)) ≥ 1, � = 1, ..., K.

Note that for text classification, data instances are often
linearly-separable due to the high dimensionality of its fea-
ture space. Therefore, in this paper, we present our frame-
work in the linearly-separable manner and leave the nonsep-
arable case to our future work. It can be shown that the
optimization problem (5) can be directly linked to a stan-
dard SVM problem with a proper feature map [9] and solved
by a standard SVM solver.

In our approach, the weight vector v is derived from the
shared subspace, and learned from all training data across
domains. Therefore, it can reflect the common discrimina-
tive information of all domains. The weight vectors {w�}’s
are only affected by the training data in the corresponding
domain, which implies that they should reflect the domain-
specific discriminative information. By splitting the feature
space into the two parts, we can measure both the com-
mon and the domain-specific model loss reduction induced
by each data instance.

4.3 Multi-Domain Active Learning
In this section, we describe our solution for the proposed

optimization framework (3) based on the multi-domain SVM.
According to (1), the global model loss can be decomposed
into the model loss of the classifier in each domain. So
our problem becomes to measure the model loss reduction
{L(f �

D) − L(f �
D+(x∗,y))}K�=1 of each classifier. As suggested

by Tong and Koller [24], we can measure the model loss of
each classifier by the size of version space. A version space
V is a set of hypotheses that are consistent with the cur-
rent training data instances [14]. For the �’th domain, the
version space V� is defined as:

V�=

{
u�

‖u�‖
∣∣∣∣u�∈W�,∀i y�

i (w
�Φ(x�

i) + vΦ(θx�
i)) > 0

}
, (6)

where u� = [w�,v] and W� is the parameter space. Since
we can simply multiply a non-zero scale to a consistent hy-
pothesis to get another one, we normalize the weight vectors
to eliminate this freedom.

For SVM, we can use the margin of SVM as an indicator
of the size of version space. Suppose we have a pool of un-

2Here we introduce Φ0(x) = 1 to replace the bias parameter
of SVM.

labeled instances, we can evaluate each candidate by adding
it into D and re-training an SVM based on (5) to estimate
the new margin. We then select the data candidate which
contributes the largest reduction of all version spaces to la-
bel. However, this process is very expensive in computation,
especially when the candidate pool is large. To make it more
practical, we apply a heuristic idea as proposed in [24](cf.
page 34) to simplify the computation by mapping the size
of new version space to the size of current version space.
Denote V �

D the size of current version space, the size of new
version space (i.e. V �

D+(x∗,y)) after adding (x∗, y) into the
training set can be approximated as:

V �
D+(x∗,y) ≈ 1 + yf �

D(x∗)
2

V �
D. (7)

Based on the approximation above, the model loss reduction
of each classifier in (3) can be rewritten as:

L(f �
D)− L(f �

D+(x∗,y)) = V �
D − V �

D+(x∗,y)

≈ 1− yf �
D(x∗)
2

V �
D. (8)

An intuitive explanation for the above estimation is that if
data candidate x∗ can be correctly predicted by the current
model, that is y = sgn(f �

D(x∗)), then the smaller the value
of ‖f �

D(x∗)‖ is, the less confidence on x∗ the current model
has. As a result, data candidate x∗ tend to be queried for
labeling. On the other hand, if data candidate x∗ cannot be
correctly predicted, then the larger the value of ‖f�

D(x∗)‖
is, the more errors the current model makes. In this case,
querying x∗ can greatly improve the current model.

Recall that, given classifier f �
D of the �’th domain, if data

candidate x∗ is not from the �’th domain, then x∗ can only
affect the version space of the �’th domain via the shared
subspace when queried. Correspondingly, classifier f�

D can
only make prediction on data candidate x∗ through the com-
mon weight vector v. So we propose to use the following pre-
dictive function f �

D(x∗) to calculate the model loss reduction
in (8),

f �
D(x∗)=

{
w� · Φ(x∗)+v · Φ(θx∗) x∗ ∈ P�,

v · Φ(θx∗) x∗ �∈ P�.

Therefore, the model loss reduction induced by each data
candidate is decomposed into two parts: 1) the version space
reduction of its corresponding domain in the whole feature
space, and 2) the version space reduction of other domains
in the shared subspace. In this way, the common model loss
of all classifiers can be reduced together, and more labeling
efforts can be saved. Since we learn all the classifiers jointly,
there is no guarantee that the solutions of (5) can lead to the
maximal margin solution for the classifier of each domain.
However, because the low-dimensional subspace is shared by
all domains, the hyperplane learned onto it should be con-
sistent with the data instances from all domains. Therefore,
the hyperplane of each domain learned by (5) is a good ap-
proximation of the hyperplane learned on the labeled data
only from its corresponding domain.

By using the size of SVM margin as the indicator of V �
D,

and substitute (8) into (3), our final query strategy for multi-
domain active learning can be written as:

x∗ = argmax
x∗

∑
y=±1

P̂ (y|x∗)
K∑
�=1

1− yf �
D(x∗)

‖u�‖ . (9)



Algorithm 1: Multi-Domain Active Learning

Input : (1) A pool P of unlabeled instances which are
collected from K domains, (2) Number of
initial training data in each domain M , (3)
Number of iterations T , (4) Number of queried
instances per iteration S

Output: K classifiers
Randomly label M data instances of each domain, and
form the initial training set D;
Learn the low-dimensional shared subspace using SFA;
for t← 1 to T do

Train K classifiers in the training set D using (5);

foreach x�
n ∈ P do

Estimate the global model loss reduction via (9);
end
Query the labels Y ∗ of S unlabeled instances U∗

which have the largest global model loss reduction;
Update the training set by D ← D ∪ (U∗, Y ∗), and
remove U∗ from P ;

end

In order to calculate P̂ (y|x∗) in (9), we train a Logistic Re-
gression classifier on all training data by maximizing the log-
likelihood J(w1, · · · ,wK ,v) =

∑
�,i log σ(y

�
i(w

�x�
i + vθx�

i)),
and use it to estimate the probabilities. The complete pro-
cess of our proposed method is summarized in Algorithm 1.
The proposed method is very efficient because it only needs
to learn one SVM per iteration, and in each iteration, it
estimates the global model loss reduction induced by each
candidate efficiently via (9).

For the classification problem having more than two cat-
egories, one simple and effective way is to use the one-vs-all
technique. Suppose we have C classes, we can train C bi-
nary classifiers {f �,c

D }Cc=1, where the classifier f �,c
D is used to

predict whether an instance belongs to the c’th class or not.
Our multi-domain active learning method can be applied
accordingly.

5. EXPERIMENTS
In this section, we conduct experiments on three real-

world applications (i.e., sentiment classification, newsgroup
classification and email spam filtering) to evaluate the effec-
tiveness of our method.

5.1 Datasets

5.1.1 Multi-Domain Sentiment Dataset
The Multi-Domain Sentiment Dataset [3] has been widely

used as a benchmark dataset for domain adaptation and sen-
timent analysis. It contains a collection of product reviews
from Amazon.com. The reviews are about four product do-
mains: Book (B), DVD (D), Electronics (E) and Kitchen
(K). Each review has been annotated as positive or neg-
ative sentiment polarity according to users’ rating scores.
The summary of this dataset is described in Table 2.

From this dataset, we construct five multi-domain sen-
timent classification tasks: B+D+E, B+D+K, B+E+K,
D+E+K andB+D+E+K, where each boldfaced letter cor-
responds with a domain. For example, B+D+E denotes
sentiment classification in Book, DVD and Electronics do-
mains.

Table 2: Summary of Multi-Domain Sentiment Dataset
Domain # Reviews # Pos # Neg # Features
Book 6,465 3,264 3,201 17,465
DVD 5,585 2,807 2,778 15,437

Electronics 7,677 3,853 3,824 13,687
Kitchen 7,945 3,954 3,991 12,439

5.1.2 20Newsgroups
The 20Newsgroups dataset3 has been widely used for news-

group classification and cross-domain text classification. As
in the previous work [6], we generate four newsgroup do-
mains from the dataset by utilizing its hierarchical struc-
ture. Table 3 shows the generated newsgroup domains. For
example, domain NG-1 contains documents from four sub-
categories, which are under four top-categories, respectively.
The classification task is defined in the top-category level,
where our goal is to classify documents into one of the four
top-categories: comp, rec, sci and talk. This domain gener-
ation strategy can ensure the domains are different but re-
lated, because different domains consist of documents in dif-
ferent sub-categories, but are under the same top-categories.

Table 3: Four Domains Generated from 20Newsgroups
Domain Newsgroups

NG-1
comp.graphics rec.autos

sci.crypt talk.politics.guns

NG-2
comp.os.ms-windows.misc rec.motorcycles

sci.electronics talk.politics.mideast

NG-3
comp.sys.ibm.pc.hardware rec.sport.baseball

sci.med talk.politics.misc

NG-4
comp.sys.mac.hardware rec.sport.hockey

sci.space talk.religion.misc

By using the generated domains, we construct four multi-
domain newsgroup classification tasks: NG-123, NG-124,
NG-134 and NG-234, where each digit denotes a domain.
For example, NG-123 denotes the multi-domain newsgroup
classification in NG-1, NG-2 and NG-3 domains.

5.1.3 Email Spam Filtering Dataset
The email spam filtering dataset4 released by ECML/PKDD

2006 discovery challenge contains 15 separate inboxes for
users u00∼u14, where “u∗∗” is a user id. For each inbox,
there are 200 spam and 200 non-spam emails. In our exper-
iments, each inbox is regarded as a domain and the learning
task is to train a spam filter for each user to classify whether
a new mail is a spam or not. From this dataset, we construct
four multi-domain spam filtering tasks: u00-u04, u05-u09,
u10-u14 and u00-u14. For example, u00-u04 denotes the
email spam filtering in u00∼u04 domains.

5.2 Comparison Methods
In order to test the effectiveness of our method (which

is referred to as MultiAL), we compare it with several active
learning approaches. The first method is to perform a single-
domain active learning for each domain independently. We
call it SingleAL. The second method is to merge all domain
data into a unified pool and perform active learning in the
unified pool to train a single classifier for prediction. We
call this approach UnifiedAL. In addition, once the shared
subspace is identified, we can embed data instances from
all domains into the shared subspace and generate a new

3http://people.csail.mit.edu/jrennie/20Newsgroups/
4http://www.ecmlpkdd2006.org/challenge.html



unified domain. We perform active learning in the new uni-
fied domain and train a single classifier for prediction. We
call this method EmbedAL. We also test the Random query
method which chooses unlabeled instances to label at ran-
dom. In this paper, the SVM-based Simple-Margin active
learning method proposed in [25] is adopted as the basic
active learner for SingleAL, UnifiedAL and EmbedAL.

An alternative solution for multi-domain active learning
is to apply existing active learning algorithms in each do-
main independently, and then apply existing transfer learn-
ing techniques to train more accurate classifiers by leverag-
ing labeled data among domains. Here, we adopt the multi-
domain SVM described in (5) as the classification method for
SingleAL and Random to get another two comparison meth-
ods. We call them SingleAL+ and Random+, respectively.

5.3 Experiment Settings
For data preprocessing, we convert all words to lower cases

and remove the stop words. Term frequency is used for
feature weighting in all methods. Linear kernel is used as the
feature map for SVM because of its good performance in text
classification [12]. LIBLINEAR SVM [10] is used as the base
classifier for all methods, and all parameters are set to their
default values. In using SFA to learn the shared subspace
for the multi-domain SVM, we adopt the same parameter
setting adopted in the original paper [17]. Specifically, we
set the number of domain-independent features to 500, and
the dimensionality of shared subspace to 100.

The classification accuracy is adopted as the evaluation
criteria. It is defined as:

Accuracy =

∣∣{x|x ∈ D�
tst ∩ c�(x) = y(x)}∣∣∣∣{x|x ∈ D�

tst}
∣∣ ,

where D�
tst denotes test data, y(x) is the ground truth and

c�(x) is the predicted label. For evaluating the overall clas-
sification performance on all domains, we adopt the domain
average accuracy as the evaluation measure. All experiments
are run on a machine with a 2.4GHz Intel Xeon processor
and 16G RAM. The average results of 20 random runs are
reported.

5.4 Results and Discussions

5.4.1 Results on Sentiment and Newsgroups Datasets
In this section, we conduct experiments on the multi-

domain classification tasks constructed from Multi-Domain
Sentiment Dataset and 20Newsgroups. In the experiment
on each task, we first randomly select 100 labeled instances
from each domain to form an initial training set, and use the
remaining data instances to form an unlabeled pool. Active
learning is iteratively performed several iterations until the
learner achieves a sufficient accuracy. In each iteration, ev-
ery active learner labels 30 data instances from unlabeled
pool and move them to the training set. Once the labeled
instances are incorporated, each active learner re-trains clas-
sifiers on the expanded training set and its performance is
evaluated on the remaining unlabeled instances.

Figure 1 shows the overall performance of each method
on sentiment classification task B+D+K. As can be seen,
MultiAL consistently outperforms each comparison method
when increasing number of new labeled instances are added.
This result suggests that our method can take advantage
of the multi-domain structure for querying, and effectively

optimize all domain classifiers together. From the figure,
we can also observe that the transfer learning baselines Sin-
gleAL+ and Random+ perform much better than the non-
transfer baselines SingleAL and Random, respectively. The
improvement is large especially when only a few data in-
stances are queried to be labeled. However, as more new
labeled instances are added, the performance of SingleAL+
and SingleAL becomes close, while MultiAL constantly out-
performs both SingleAL+ and SingleAL. In addition, Mul-
tiAL increasingly outperforms EmbedAL when the number
of queried data instances increases. It implies that the clas-
sifier trained in the shared subspace alone may not be able to
generalize well across different domains. The overall perfor-
mance on other sentiment classification tasks is presented
in Figure 2. From the figures, we can observe the similar
trends on all tasks.
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Figure 1: The sentiment classification results on B+D+K
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(a) Results on B+D+E

 70

 75

 80

 85

 90

 95

 0  1000  2000  3000  4000  5000  6000

A
cc

ur
ac

y 
(%

)

The Number of New Labeled Instances

MultiAL
SingleAL+

SingleAL
EmbedAL
UnifiedAL
Random+

Random

(b) Results on B+E+K
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(c) Results on D+E+K
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(d) Results on B+D+E+K

Figure 2: The sentiment classification results on the tasks
constructed from Multi-Domain Sentiment Dataset

Table 4 summarizes the classification accuracy on each
domain of task B+D+K. From the table, we can observe
that MultiAL outperforms all comparison methods on each
individual domain.

Furthermore, one more practical and interesting question
is that how many human labeling efforts can be saved by us-
ing MultiAL? Table 5 shows how many new labeled instances



Table 4: The Classification Accuracy (%) on Task B+D+K after 4,000 New Labeled Instances Added

Domain Random Random+ UnifiedAL EmbedAL SingleAL SingleAL+ MultiAL
Book 79.73±0.60 84.95±0.41 86.63±0.33 88.48±0.34 85.19±0.25 86.62±0.31 90.95±0.19
DVD 79.81±0.50 85.01±0.47 87.42±0.80 88.12±0.10 85.85±0.29 87.56±0.23 90.33±0.36

Kitchen 85.30±0.31 89.11±0.23 92.39±0.22 91.34±0.12 91.38±0.29 92.24±0.32 94.80±0.15
Average 81.62±0.26 86.36±0.32 88.81±0.33 89.31±0.10 87.47±0.12 88.81±0.14 92.03±0.14

Table 5: The Number of New Labeled Instances Needed for Each Learner to Achieve 90% Accuracy on Sentiment Classification

Task Random Random+ UnifiedAL EmbedAL SingleAL SingleAL+ MultiAL
B+D+E >6,000 >6,000 4,860 5,820 5,460 5,100 3,360
B+D+K >6,000 >6,000 4,500 4,560 5,100 4,680 3,000
B+E+K >6,000 >6,000 4,140 4,320 4,680 4,200 2,700
D+E+K >6,000 >6,000 3,780 4,020 4,560 4,080 2,520

B+D+E+K >8,000 >8,000 5,440 5,600 6,560 5,920 3,600
Average >6,400 >6,400 4,544 4,864 5,272 4,796 3,036
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(a) Results on NG-123
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(b) Results on NG-124
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(c) Results on NG-134
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(d) Results on NG-234

Figure 3: The newsgroup classification results on the tasks constructed from 20Newsgroups

Table 6: The Number of New Labeled Instances Needed for Each Learner to Achieve 95% Accuracy on Newsgroup Classification

Task Random Random+ UnifiedAL EmbedAL SingleAL SingleAL+ MultiAL
NG-123 >3,000 >3,000 >3,000 >3,000 2,280 1,800 1,080
NG-124 >3,000 >3,000 2,820 >3,000 2,040 1,620 1,020
NG-134 >3,000 >3,000 2,760 2,880 2,100 1,500 780
NG-234 >3,000 >3,000 2,520 2,580 1,920 1,380 720
Average >3,000 >3,000 >2,775 >2,865 2,085 1,575 900

are needed for each active method to achieve a satisfactory
classification accuracy (i.e., 90%). From Table 5, we can find
that MultiAL saves at least 33.2% labeling efforts on average
compared with all comparison methods. For example, on
task B+D+E+K, MultiAL only needs to label 3,600 data
instances to achieve 90% classification accuracy, while the
best active learning baseline UnifiedAL requires 5,440 new
labeled instances. The random query methods Random and
Random+ cannot achieve the desired classification accuracy
even if 8,000 new labeled instances are added. The result
suggests that our method can effectively save the redundant
labeling efforts by optimizing the classifiers of all domains
together.

In the following, we report the experiment results on the
newsgroup classification tasks. Figure 3 illustrates the over-
all performance on the four multi-domain newsgroup classifi-
cation tasks. As can be seen from the figures,MultiAL consis-
tently outperforms the comparison methods on all tasks. In
addition, we can find that UnifiedAL always performs worse
than SingleAL. An explanation is that when the domain gap
is large, the query strategy would be affected by the inher-
ent difference between domains. Table 6 shows the number
of new labeled instances needed for each method to achieve

95% newsgroup classification accuracy. As presented in the
table, MultiAL saves more than 42.9% labeling efforts com-
pared with all comparison methods.

5.4.2 Results on Email Spam Filtering Dataset
In this section, we discuss our experiments on the email

spam filtering dataset. The experiments are conducted in
the inductive setting. For each task, we randomly select 10
emails of each user to form an initial training set, and select
100 emails of each user to form a test set. The remaining
emails are used to form an unlabeled pool. Active learning
is iteratively performed several iterations with 5 new labeled
emails are added per iteration. Figures 4 shows the classi-
fication results on the test sets for the four spam filtering
tasks. As illustrated in the figures, the accuracy curves of
MultiAL grow very fast and achieve satisfactory performance
after a few iterations. But other methods need much more
querying iterations to obtain the comparable performance.
Table 7 shows how many new labeled instances are needed
for each method to achieve 95% classification accuracy on
each task. From the table, we can observe that MultiAL
saves more than 68.7% labeling efforts on average compared
with all baseline methods.
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Figure 4: The email spam filtering results on the tasks constructed from Email Spam Filtering Dataset

Table 7: The Number of New Labeled Instances Needed for Each Learner to Achieve 95% Accuracy on Email Spam Filtering

Task Random Random+ UnifiedAL EmbedAL SingleAL SingleAL+ MultiAL
u00-u04 >500 310 >500 190 360 230 80
u05-u09 >500 >500 >500 >500 >500 >500 150
u10-u14 >500 340 >500 290 >500 250 70
u00-u14 >1,500 1,140 780 360 >1,500 720 120
Average >750 >572 >570 >335 >715 >425 105

5.4.3 Parameter Sensitivity Analysis
There are two important parameters for active learning

methods: 1) the size of initial training set, and 2) the num-
ber of queried instances per iteration. In addition, the di-
mensionality of the shared space is an important parameter
of the multi-domain classification method in our proposed
framework. In this section, we test the sensitivity of these
parameters. When testing a specific parameter, we fix other
parameters and vary the value of the parameter of our inter-
est. For example, when testing the influence of initial train-
ing set size, we set the dimensionality of shared subspace to
100 for all tasks, and set the number of queried instances per
iteration to 300 and 5 for the sentiment/newsgroup classifi-
cation and the spam filtering tasks, respectively.
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(a) Parameter sensitivity on the sentiment datasets
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(c) Parameter sensitivity on the email spam datasets

Figure 5: Parameter sensitivity of: 1) numbers of initial
training instances per domain, 2) numbers of new labeled in-
stances per iteration, 3) dimensionality of shared subspaces

Figure 5 shows the parameter sensitivity of our method af-
ter 3000, 3000 and 500 new labeled data instances are added
on the sentiment classification, the newsgroup classification
and the spam filtering tasks, respectively. As presented in
the figures, the performance of MultiAL is stable and con-
sistent under different parameter settings. In general, the
performance of MultiAL improves when more initial train-
ing data instances are available. And when the total number
of queried instances are fixed, the performance of MultiAL
drops when the number of queried instances per iteration
increases. The reason may be that for each iteration, the
more instances the active learner queries, the more dupli-
cate information the active learner may get. Finally, we can
also observe that MultiAL works well and stably when the
dimensionality of the shared subspace ranges from 50 to 200.

5.4.4 Scalability
In this section, we investigate the scalability of the pro-

posed method. In our experiment, we use the re-sampling
strategy on both Multi-Domain Sentiment Dataset and 20News-
groups to construct a set of data pools for experiments. In
the experiment, we fix the number of iterations to 10, and
fix the number of queried instances per iteration to 400.
Figure 6 demonstrates the different running time when the
size of unlabeled data pool varying from 20,000 to 1,000,000.
From the figure, we can observe that the running time lin-
early increases under varying sizes of the unlabeled data
pool. The result suggests that our proposed method is effi-
cient and capable of dealing with large-scale applications.
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6. CONCLUSIONS AND FUTURE WORK
In this work, we aim to solve a novel active learning prob-

lem for building classifiers of multiple domains simultane-
ously. Different from conventional active learning algorithms
which focus on improving a single domain classifier, the pro-
posed method aims to query the data instance which can not
only improve the classifier of its corresponding domain but
also improve the classifiers of other domains. The experi-
ment results on three real-world applications show that our
method respectively reduce the human labeling efforts by
33.2%, 42.9% and 68.7% on these applications. In addition,
the proposed approach has been verified to be efficient and
easily applied to large-scale applications. In the future, we
plan to extend our work in the following directions: 1) In
this work, we use a score function to rank unlabeled data
instances for querying. However, this criteria can be bi-
ased by some data instances which contain rare patterns and
are far away from existing labeled instances. It is not clear
whether we can correct such label-sampling bias with impor-
tance weighting. 2) Given a large number of domains, some
features may be shared by a subset of domains instead of all
domains. It is interesting to jointly query instances under a
hierarchical structure among domains. 3) With the increas-
ing number of new labeled instances, it would be helpful to
re-build the shared subspace after each iteration of active
learning. 4) How to apply our active learning framework to
other classification methods is also an interesting problem.
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